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Abstract: This study applies the GRU (Gated Recurrent Unit) model when selecting 

different values of batch-size, namely 16, 32, and 64, with varying epochs of 20, 50, 100, 

150, and 200. The input data comprises observations collected by two GNSS CORS stations 

from the VNGEONET network, namely HYEN and CTHO, spanning from August 10, 

2019, to March 18, 2022. Initially, GNSS CORS data is processed using Gamit/Globk 

software to obtain the Up-component, which serves as the input data for the GRU model. 

The research results indicate that the statistical performance metrics of the model, such as 

RMSE and MAE, decrease while the F-Score increases when the batch-size decreases and 

the epoch value increases. In cases where the Up-component exhibits irregular variations 

(seasonal fluctuations), the performance of the GRU model is subpar, with an F-Score of 0 

observed when batch-size values are 32 and 64 and epoch value is 20. For data following 

the pattern of CTHO CORS station, the GRU model performs exceptionally well when 

batch-size is 16 and epoch is 200. However, the forecasting performance is low for data 

from HYEN CORS station, indicating the need for further investigation in the future. 
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1. Introduction 

Due to technological advancements, data collection has been automated, continuous, or 

temporally dense, resulting in various types of time series data. Time series data in geospatial 

applications include GNSS, satellite altimetry, remote sensing data, etc. GNSS data has been 

applied in atmospheric layer research, oceanic observations, soil moisture monitoring, ice 

sheet observations [1], and tectonic plate movements [2], etc. Altimetry time series data is 

utilized in various marine activities, monitoring marine life, weather and climate forecasting, 

coastal inundation monitoring due to sea level rise or subsidence, natural disaster mitigation, 

etc. [3]. Remote sensing time series data applications include land cover classification [4], 

forest monitoring [5], erosion studies [6], etc. Research [7] has highlighted the extensive 

applications of artificial intelligence in large geospatial datasets, quality assessment, data 

modeling and structuring, data visualization and visual analytics, data mining, and 

knowledge discovery, etc. With the establishment continuosly operation reference station 

(CORS), users are provided with time-series data. The data provided by CORS station 

networks can be applied in various fields such as tectonic plate movement monitoring, sea 
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level monitoring, atmospheric research [8] etc. Data collected by CORS stations firstly need 

to be processed using high-precision GNSS data processing software such as Gamit/Globk 

[9], Bernese [10] etc. The result of this processing is the daily coordinate components of 

CORS stations. To analyze the daily time-series data obtained as mentioned above, various 

traditional solutions have been published, such as least-squares estimation, moving ordinary 

least-squares wavelet decomposition (WD), singular spectrum analysis (SSA), Kalman 

Filter (KF), adaptive wiener filter (AWF), or combinations thereof [11]. Additionally, 

artificial intelligence models have also been applied to analyze GNSS time-series data. 

Five artificial intelligence models, namely attention mechanism with long short time 

memory neural network (AMLSTM), long short time memory neural network (LSTM), 

recurrent neural networks (RNN), support vector machine (SVM), and random forest (RF), 

have been utilized for landslide detection [12]. Additionally, the authors proposed combining 

the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) 

technique with the LSTM model. Experimental results demonstrated that the CEEMDAN-

LSTM model could be recommended for other landslide prediction studies and has 

significant potential in landslide risk assessment. The study [13] applied Gradient Boosting 

Decision Tree (GBDT), LSTM, and SVM models to analyze GNSS time-series data. The 

results showed that the proposed models had RMSE values ranging from 3mm to 5mm, 

smaller than those of corresponding traditional methods. Moreover, artificial intelligence 

models enable the integration of various factors causing in land surface movement from 

GNSS time series data [13]. 

The GBDT model has been used as a benchmark against the XGBoost and RF models 

for interpolating coordinate values in GNSS time-series data. The computational results 

indicate that the Up-component is interpolated with up to 45% greater accuracy compared 

to traditional methods, with the XGBoost model yielding the poorest interpolation results 

[14]. For each different setting of batch size and epoch, different artificial intelligence 

models will yield different prediction results. Research [15] has compiled errors for both 

training and testing datasets using batch sizes ranging from 64 to 2048. The results indicate 

that a batch size of 128 yields the smallest error for both datasets. Additionally, research [16] 

has shown that the noise level increases as the loss decreases during training and largely 

depends on the model size, with model performance being improved. 

Research [17] has demonstrated that training with small batches has been proven to 

improve generalization performance and allows for significantly smaller memory usage, 

which can also be leveraged to enhance machine throughput. Nesterov and Adam optimizers 

have been found to train more efficiently than baseline models when using large batch sizes. 

There have been several publications on the application of artificial intelligence in analyzing 

time-series data. Author [18] employed a recurrent neural network to forecast meaningful 

wave heights for disaster prevention efforts in Vietnam. Research [19] applied an ANN 

model to analyze GNSS time-series data, yielding an RMSE determination of 0.006m. RNN 

models were chosen by authors [20] to predict surface water quality with an accuracy ranging 

from 75% to 85%. Although some studies have been published, there has been no research 

in the earth science field specifically addressing experimentation with different batch sizes 

and epochs to analyze time-series data. 

This study evaluates the performance of the GRU model by configuring different values 

of batch size and epoch during model execution, applied in a typical case of analyzing GNSS 

time-series data. 

2. Data and Research methodology 

2.1. Data 

The data used in this paper was collected by continuosly operation reference station 

(CORS) receivers, belonging to the VNGEONET network, namely CTHO and HYEN, 



J. Hydro-Meteorol. 2024, 19, 90-99; doi:10.36335/VNJHM.2024(19).90-99 92 

provided by the Department of Survey and Mapping, Vietnam. Information regarding the 

GNSS data used in this study is provided as shown in Table 1. 

Table 1. Information about measurement data at GNSS CORS stations. 

Station name 
Time 

Receiver type Antenna type 
Interval 

(second) First epoch Last epoch 

CTHO 
2019/08/10 2022/03/18 LEICA GR50 

LEIAR25.R4      

LEIT 
30 

HYEN 

 The positions of the HYEN CORS station and 

the CTHO CORS station are depicted as shown 

in Figure 1. 

2.2. Methodology 

The data as described in Table 1 was 

processed using Gamit/Globk software to obtain 

daily coordinate components (including the 

North, East, and Up components) of the GNSS 

CORS stations. The up-component value series 

was then utilized as the input data for the GRU 

model. The research methodology of the paper is 

provided in Figure 2. 

The GNSS data, once collected, will be 

converted into RINEX data format and analyzed 

using the Gamit/Globk software [21] to obtain 

daily coordinate components of the stations. The 

GNSS data processing procedure in this case has 

been presented in the study [22]. 

The Gated Recurrent Unit (GRU) is a type 

of artificial neural network model, particularly 

suited for sequential data processing 

tasks such as natural language 

processing and time series analysis. 

Developed as an enhancement of the 

traditional recurrent neural network 

(RNN), the GRU addresses some of 

the shortcomings of the standard 

RNN architecture, particularly in 

handling long-range dependencies 

and the vanishing gradient problem. 

One of the key features of the 

GRU is its gating mechanism, which 

allows it to selectively update and 

forget information over time. This 

mechanism consists of update and 

reset gates, which regulate the flow 

of information within the network. 

By adaptively controlling the flow 

of information, the GRU is able to 

capture relevant patterns and 

dependencies in sequential data 

Figure 1. The positions of the HYEN CORS 

station and the CTHO CORS station. 

Figure 2. Experimental method of artificial intelligence model 

testing with different batch sizes and epochs. 
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more effectively. Compared to the long short-term memory (LSTM) model, another popular 

variant of the RNN architecture, the GRU offers similar performance with a simpler 

structure, requiring fewer parameters to train and often achieving faster convergence during 

training. Its computational efficiency and competitive performance make it a popular choice 

for various sequence modeling tasks in both research and practical applications. 

Based on the selected model, Python language and library functions were utilized to 

construct the experimental computation program [23, 24], etc. 

To achieve the desired results, the research team conducted experiments with batch sizes 

set to 16, 32, and 64, and for epochs, values were assigned as 10, 50, 100, 150, and 200, 

respectively. Model evaluation was performed by statistically analyzing performance 

metrics including RMSE, MAE, and F-score. To assess the performance of the model, 

evaluation methods similar to those used in studies [18, 19] were employed. The operation 

method of the GRU model in this case is depicted as shown in Figure 3. 

 

Figure 3. Prediction method with the GRU model. 

3. Results and Discussion 

3.1. Results obtained with the dataset from HYEN CORS station 

From the data in Table 2, it can be observed that the RMSE value increases rapidly when 

the epoch value is small and the batch-size value increases from 16 to 64. For the same batch-

size value, as the epoch value increases, the RMSE value decreases. In the case of the largest 

batch-size value (with a value of 64), the RMSE value decreases very rapidly. The minimum 

RMSE value for HYEN CORS station is achieved at 0.010 when batch-size = 16 and epoch 

= 200. 

Table 2. RMSE determination results with data from HYEN CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.543 0.487 0.248 0.017 0.010 

32 5.626 0.557 0.541 0.337 0.103 

64 13.394 0.611 0.651 0.606 0.512 

Table 3. MAE determination results with data from HYEN CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.469 0.379 0.192 0.014 0.006 

32 5.618 0.429 0.420 0.261 0.079 

64 13.393 0.468 0.506 0.471 0.398 

The variation in the MAE values for the input data from HYEN CORS station is similar 

to RMSE. The minimum MAE value achieved is 0.006, corresponding to a batch-size of 16 

and epoch of 200. 
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In AI applications, the F-score, also known as the F1-score, is a metric commonly used 

to evaluate the performance of a binary classification model. It is the harmonic mean of 

precision and recall, providing a single measure that balances between these two metrics. 

Precision measures the proportion of true positive predictions among all positive predictions, 

while recall measures the proportion of true positive predictions among all actual positives. 

The F-score ranges from 0 to 1, where a higher score indicates better performance. It's 

particularly useful when the class distribution is imbalanced, as it considers both false 

positives and false negatives. The determined F-Score results in this case are as follows: 

Table 4. Results of F-Score determination with data from HYEN CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.312 0.181 0.417 1.000 1.000 

32 0.000 0.181 0.179 0.265 0.473 

64 0.000 0.146 0.174 0.174 0.179 

Table 4 demonstrates the very high performance of the model when selecting batch-size 

= 16 and epoch = 200; when batch-size is set to 32 or 64, with epoch = 20, the model's 

predictive performance equals 0. This aligns perfectly with the significantly large RMSE 

and MAE values. Figures 4, 5, 6 below represent the predicted values, actual values on the 

test dataset, the entire dataset, and the loss curve in the case of batch-size = 16 and epoch = 

200 for the HYEN CORS station dataset. 

 

Figure 4. Predicted values on the test dataset of HYEN CORS station 

 

Figure 5. Actual and predicted values on the entire dataset of HYEN CORS station. 

From Figure 4, it can be observed that the predicted values are significantly higher than 

the actual values. There are several factors that may contribute to this phenomenon, 

including unusual fluctuations in the daily Up-component. To accurately conclude on the 
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aforementioned phenomenon, it is necessary to gather additional closely related data 

concerning the variations of the Up-component, such as meteorological data, hydrological 

and geological data, etc. 

 

Figure 6. Loss curve on the test dataset of HYEN CORS station. 

From Figure 5, it can be observed that the variation in the Up-component displacement 

of HYEN CORS station does not exhibit periodicity as some published results have indicated 

[25]. Figure 7 shows the Up-component results of the HYEN CORS station determined using 

the Gamit/Globk software, serving as evidence for the arguments presented above. 

 

 

Figure 7. Up-component results of the HYEN CORS station were determined by the Gamit/Globk software. 

In Figure 7, the vertical axis represents the daily changes in the up-component 

(measured in mm), while the horizontal axis represents time (measured in years). 

This may lead to the predictive performance of the artificial intelligence model in this 

case not being as high as the results achieved even with the use of a simple artificial 

intelligence model [19]. 

3.2. Results obtained with the dataset from CTHO CORS station 

Table 5. RMSE determination results with data from CTHO CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.1523 0.0870 0.00154 0.00098 0.00074 

32 0.1632 0.1513 0.0469 0.00136 0.00129 

64 0.2668 0.1846 0.1410 0.07414 0.00213 

From Table 5, it can be observed that the RMSE values decrease only slightly as the 

batch-size varies from 16 to 64. This indicates the suitability of the artificial intelligence 

model being employed. 
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Table 6. MAE determination results with data from CTHO CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.1175 0.0686 0.0010 0.00062 0.00053 

32 0.1255 0.1179 0.0370 0.00084 0.00058 

64 0.2303 0.1424 0.1110 0.05866 0.00091 

Table 7. F-Score determination results with data from CTHO CORS station. 

Batch size 
Epoch 

20 50 100 150 200 

16 0.5573 0.5653 0.95216 0.9621 0.9589 

32 0.5490 0.5447 0.55288 0.9522 0.9504 

64 0.2312 0.5367 0.54468 0.5778 0.9256 

From the data in Table 5 to Table 7, it can be observed that the fluctuation trends of 

RMSE, MAE, and F-Score values for the data from CTHO CORS stattion are similar to 

those for HYEN CORS station. However, the variation of the Up-component for CTHO 

CORS station is similar to previous publications (Figure 8). 

 

Figure 8. Graph of Up-component of CTHO CORS station determined by Gamit/Globk. 

The up-component values in Figure 8 demonstrate a systematic variation of this 

component for the CTHO CORS station, explaining the F-score values of 0.5490 and 0.2312 

respectively for batch-size = 32 and 64, epoch = 20. The RMSE = 0.00074 and MAE = 

0.00053 for batch-size = 16 and epoch = 200. These indicate very high performance in 

predicting the determined quantity from the GNSS time-series data compared to existing 

publications [13,19,26]. These are promising preliminary results in the application of 

artificial intelligence models for analyzing GNSS time-series data. 

Figure 9. Predicted and actual values for the test dataset of the CTHO CORS station. 
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The graphs representing the actual values, predicted values on the test dataset, the entire 

dataset, and the loss curve when analyzing the CTHO CORS station data in the case of batch-

size = 16 and epoch = 200 are shown in Figures 9 to 11. 

 

Figure 10. Predicted and actual values for the entire dataset of the CTHO CORS station. 

 

Figure 11. Loss curve of the test dataset of the CTHO CORS station. 

Figures 9 and 10 demonstrate the very high suitability of the GRU model for the data of 

the CTHO CORS station, as evidenced by the predicted values closely matching the actual 

values across the datasets. Additionally, the loss value nearly approaches zero after a few 

epochs (Figure 11). 

4. Conclusion  

This study successfully experimented with different values of batch-size and epoch when 

analyzing GNSS time-series data using the artificial model. When applying artificial 

intelligence (specifically the GRU model) to analyze GNSS time series, it is necessary to 

select a small batch size value (specifically 16) to achieve the best forecasting performance 

with the model. 

The experimental results demonstrate that when the up-component varies irregularly, 

unlike in the case of HYEN CORS station, predicting using artificial intelligence models is 

not very effective. Specifically, when the epoch value is 20 and the batch-size is 32 and 64 

respectively, the GRU model cannot predict the Up-component values in this case, as 

indicated by an F-Score of 0. 

Statistical metrics such as RMSE and MAE decrease, while F-Score increases (indicating 

improved prediction performance with artificial intelligence models) as the batch-size 

decreases and epoch increases. The prediction results show very high performance for the 
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CTHO CORS station dataset when batch-size = 16 and epoch = 200, demonstrated by metrics 

such as RMSE = 0.00074, MAE = 0.00053, and F-Score = 0.9589. This performance is 

excellent compared to existing publications. 

One limitation of this study is that it does not propose a solution for forecasting or 

analyzing the Up-component in cases where the variation is irregular, as in the case of the 

HYEN CORS station. This is an issue that requires further investigation in the future. 
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